trans-3-Chloroacrylic acid dehalogenase from Pseudomonas pavonaceae 170 shares structural and mechanistic similarities with 4-oxalocrotonate tautomerase.

نویسندگان

  • G J Poelarends
  • R Saunier
  • D B Janssen
چکیده

The genes (caaD1 and caaD2) encoding the trans-3-chloroacrylic acid dehalogenase (CaaD) of the 1,3-dichloropropene-utilizing bacterium Pseudomonas pavonaceae 170 were cloned and heterologously expressed in Escherichia coli and Pseudomonas sp. strain GJ1. CaaD is a protein of 50 kDa that is composed of alpha-subunits of 75 amino acid residues and beta-subunits of 70 residues. It catalyzes the hydrolytic cleavage of the beta-vinylic carbon-chlorine bond in trans-3-chloroacrylic acid with a turnover number of 6.4 s(-1). On the basis of sequence similarity, oligomeric structure, and subunit size, CaaD appears to be related to 4-oxalocrotonate tautomerase (4-OT). This tautomerase consists of six identical subunits of 62 amino acid residues and catalyzes the isomerization of 2-oxo-4-hexene-1,6-dioate, via hydroxymuconate, to yield 2-oxo-3-hexene-1,6-dioate. In view of the oligomeric architecture of 4-OT, a trimer of homodimers, CaaD is postulated to be a hexameric protein that functions as a trimer of alpha beta-dimers. The sequence conservation between CaaD and 4-OT and site-directed mutagenesis experiments suggested that Pro-1 of the beta-subunit and Arg-11 of the alpha-subunit are active-site residues in CaaD. Pro-1 could act as the proton acceptor/donor, and Arg-11 is probably involved in carboxylate binding. Based on these findings, a novel dehalogenation mechanism is proposed for the CaaD-catalyzed reaction which does not involve the formation of a covalent enzyme-substrate intermediate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily.

Isomer-specific 3-chloroacrylic acid dehalogenases function in the bacterial degradation of 1,3-dichloropropene, a compound used in agriculture to kill plant-parasitic nematodes. The crystal structure of the heterohexameric trans-3-chloroacrylic acid dehalogenase (CaaD) from Pseudomonas pavonaceae 170 inactivated by 3-bromopropiolate shows that Glu-52 in the alpha-subunit is positioned to funct...

متن کامل

Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity

Trans-3-chloroacrylic acid dehalogenase (CaaD) is a critical enzyme in the trans-1,3-dichloropropene (DCP) degradation pathway in Pseudomonas pavonaceae 170. This enzyme allows bacteria to use trans-DCP, a common component in commercially produced fumigants, as a carbon source. CaaD specifically catalyzes the fourth step of the pathway by cofactor-independent dehalogenation of a vinyl carbon-ha...

متن کامل

Degradation of 1,3-dichloropropene by pseudomonas cichorii 170.

The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1, 3-dichloropropene, could utilize low concentrations of 1, 3-dichloropropene as a sole carbon and energy source. Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different de...

متن کامل

Characterization of a newly identified mycobacterial tautomerase with promiscuous dehalogenase and hydratase activities reveals a functional link to a recently diverged cis-3-chloroacrylic acid dehalogenase.

The enzyme cis-3-chloroacrylic acid dehalogenase (cis-CaaD) is found in a bacterial pathway that degrades a synthetic nematocide, cis-1,3-dichloropropene, introduced in the 20th century. The previously determined crystal structure of cis-CaaD and its promiscuous phenylpyruvate tautomerase (PPT) activity link this dehalogenase to the tautomerase superfamily, a group of homologous proteins that a...

متن کامل

Characterization of Cg10062 from Corynebacterium glutamicum: Implications for the Evolution of cis-3-Chloroacrylic Acid Dehalogenase Activity in the Tautomerase Superfamily†

A 149-amino acid protein designated Cg10062 is encoded by a gene from Corynebacterium glutamicum. The physiological function of Cg10062 is unknown, and the gene encoding this protein has no obvious genomic context. Sequence analysis links Cg10062 to the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) family, one of the five known families of the tautomerase superfamily. The characterized taut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 183 14  شماره 

صفحات  -

تاریخ انتشار 2001